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Abstract 54 

Promising evidence has suggested potential links between mind-wandering and Alzheimer's 55 

disease (AD). Yet, older adults with diagnosable neurocognitive disorders show reduced 56 

meta-awareness, thus questioning the validity of probe-assessed mind-wandering in older 57 

adults. In prior work, we employed response time variability as an objective, albeit indirect, 58 

marker of mind-wandering to identify patterns of functional connectivity that predicted mind-59 

wandering. In the current study, we evaluated the association of this connectome-based, 60 

mind-wandering model with CSF p-tau/Aβ42 ratio in 289 older adults from the Alzheimer's 61 

Disease NeuroImaging Initiative (ADNI). Moreover, we examined if this model was similarly 62 

associated with individual differences in composite measures of global cognition, episodic 63 

memory, and executive functioning. Edges from the high response time variability model 64 

were significantly associated with CSF p-tau/Aβ ratio. Furthermore, connectivity strength 65 

within edges associated with high response time variability was negatively associated with 66 

global cognition and episodic memory functioning. This study provides the first empirical 67 

support for a link between an objective neuromarker of mind-wandering and AD 68 

pathophysiology. Given the observed association between mind-wandering and cognitive 69 

functioning in older adults, interventions targeted at reducing mind-wandering, particularly 70 

before the onset of AD pathogenesis, may make a significant contribution to the prevention 71 

of AD-related cognitive decline.  72 

 73 

 74 

 75 

 76 

 77 
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1. Introduction 81 

Mind-wandering is considered a ubiquitous human phenomenon with adults 82 

endorsing such experiences in 30-50% of their waking times. Traditionally defined as the 83 

occurrence of stimulus-independent thoughts during an externally oriented task (Smallwood 84 

& Schooler, 2006), mind-wandering has been quantified using thought probes embedded in 85 

tasks of sustained attention (Giambra, 1989). These self-reported probes are designed to 86 

inquire about the content and nature of thought processes right before the presentation of 87 

the probe, and though there has been considerable heterogeneity in the literature on the 88 

structuring and wording of these thought probes (see Seli et al., 2018 for a discussion on 89 

this topic), there is an emerging consensus that mind-wandering is a multi-dimensional 90 

construct that captures a range of experiences (Groot et al., 2021; Kane et al., 2007).  91 

A more recent neural model of mind-wandering also postulates that, rather than truly 92 

reflecting mind-wandering, these self-reported thought probes capture an intermediate off-93 

focus, or exploratory state that lies between on-task thinking and mind-wandering (Mittner et 94 

al., 2016). This "off-focus", exploratory state that follows the state of sustained attention is 95 

characterized by increased functional connectivity across many canonical networks of the 96 

brain. One of the key features that distinguishes the off-focus state from the mind-wandering 97 

state is the impact on behavioral performance as off-focus exploration is associated with 98 

modest impact on behavioral performance whereas the state of mind-wandering is 99 

characterized by significant variability in behavioral performance. According to this model 100 

then, the reaction time coefficient of variation, the trial-to-trial fluctuation in reaction time, is a 101 

better, albeit indirect, indicator of the mind-wandering state. Supporting this conjecture, 102 

increased individual variability in reaction time has, indeed, been associated with self-103 

reports of mind-wandering episodes (Bastian & Sackur, 2013; Henríquez et al., 2016; 104 

Jubera-García et al., 2020; Kucyi et al., 2016; Maillet et al., 2020) as well as other lapses in 105 

attention (Schooler et al., 2014). Moreover, response time variability has also been found to 106 
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be higher on trials preceding off-task thought probes compared to on-task probes (Seli et 107 

al., 2013).  108 

Interestingly, the aging literature provides support for the differential trajectories of 109 

metrics of mind-wandering with increasing age. Self-reported mind-wandering, assessed 110 

through thought probes, and capturing the ability to direct resources to off-task thinking 111 

amid cognitively taxing tasks, tends to decline with age (Jackson & Balota, 2012)—including 112 

in individuals with mild cognitive impairment and AD (Niedźwieńska & Kvavilashvili, 2018; 113 

O'Callaghan et al., 2019). Though there are theoretical models that explain lower 114 

endorsement of mind-wandering probes as reflective of fewer available cognitive resources 115 

to engage in mind-wandering in older adults (Smallwood & Schooler, 2006), others have 116 

provided evidence for reduced meta-awareness with advancing age, particularly in those 117 

with neurocognitive disorders (Rosen et al., 2014). In contrast, response time variability 118 

follows the hypothesized association with age as a more objective marker of mind-119 

wandering. Older adults demonstrate higher response time variability compared with young 120 

adults (Zavagnin et al., 2014), and high variability has robust consequences for cognitive 121 

functioning (Jackson et al., 2012).  122 

Moreover, mind-wandering episodes have been linked with reduced communication 123 

between temporal and prefrontal regions of the default mode network (Martinon et al., 2019; 124 

O'Callaghan et al., 2015) and a reduced engagement of the medial and lateral prefrontal 125 

cortex as well as of the left superior temporal gyrus (Maillet et al., 2019) in older adults. 126 

Extending this to individuals with dementia, O'Callaghan and colleagues (2019) employed a 127 

minimally demanding Shapes Expectation Task. Using thought probe data, they computed a 128 

mind-wandering index to examine associations between mind-wandering, functional 129 

connectivity, and gray matter volume. In older adults with AD, the mind-wandering index 130 

was associated with reduced coupling of the posterior cingulate cortex (a metabolic hub of 131 

the default mode network), the hippocampus, and the prefrontal cortex. In a recent study, 132 

we leveraged connectome-based predictive modeling— a whole-brain and data-driven 133 
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technique that allows for the derivation of brain-based predictive models from individualized 134 

functional connectivity patterns—to develop a neural model for response time variability 135 

(RT_CV CPM) in a cohort of 145 older adults, aged 65 to 85 years (Gbadeyan et al., 2022; 136 

Shen et al., 2017). Using data from the Human Connectome Project-Aging (Bookheimer et 137 

al., 2019), we identified functional connections during the Go/No-Go task that were 138 

predictive of high response time variability and functional connections that were predictive of 139 

low response-time variability. The task-based predictive model was robust to the effects of 140 

age, sex, study sites, and the cross-validation method. Neuroanatomically, the whole-brain 141 

model provided support for the differential involvement of key canonical networks, including 142 

the default mode network, the somatomotor network, the dorsal attention network, the 143 

ventral attention network, the visual network, and the frontoparietal network. 144 

In this study, we extend the application of our task-based RT_CV CPM to more trait-145 

like AD pathophysiology by investigating whether network strength in the high and low 146 

response-time variability models is associated with a well-established cerebrospinal fluid-147 

based marker of AD pathophysiology (p-tau/Aβ42 ratio) in resting-state fMRI. In prior work in 148 

our lab, we have shown that the combined ratiometric measure of amyloid and tau 149 

pathology (p-tau/Aβ42), was better at determining diagnostic status—cognitively normal, 150 

MCI, and AD—than either p-tau or Aβ42 alone (McKenna et al., under review). Thus, in the 151 

current study, we selected the CSF-based ratio of p-tau/Aβ42 as a metric for AD 152 

pathophysiology. Employing neuroimaging and cerebrospinal fluid-based data available 153 

dataset from the Alzheimer's Disease Neuroimaging Initiative (Mueller et al., 2005), we 154 

computed network strength in the high and low mind-wandering models. We hypothesized 155 

that network strength in the high RT_CV model would be associated with higher levels of p-156 

tau/Aβ42, suggesting that high response time variability is linked with greater levels of AD 157 

pathophysiology. For the low RT_CV model, we hypothesized that network strength would 158 

be negatively associated with pathophysiology levels. And, finally, to directly examine the 159 

functional significance of the response time variability models for cognitive performance, we 160 
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also examined associations between network strengths in the high and low RT_CV models 161 

with cognitive functioning in the composites of global cognition, episodic memory, and 162 

executive functioning. To our knowledge, this is the first study to directly examine the 163 

functional edges involved in a response time variability connectome with that of fluid-based 164 

biomarkers to explore the shared connectomics between mind-wandering and AD 165 

pathophysiology. 166 

 167 

2. Materials and Methods 168 

2.1. Data overview 169 

We analyzed the publicly available fMRI, cerebrospinal fluid biomarker, and 170 

behavioral data of 324 older adults aged 55-90 from the Alzheimer's Disease Neuroimaging 171 

Initiative (ADNI; Petersen et al., 2010). In addition, the RT_CV models (Gbadeyan et al., 172 

2022) utilized in this report was previously generated using data from the Human 173 

Connectome Project in Aging (HCP-Aging; Bookheimer et al., 2019). 174 

 175 

2.2. Participants 176 

ADNI is an ongoing, multicenter study that has sought to define Alzheimer's disease 177 

progression using a variety of modalities (PET, MRI, and cerebrospinal fluid-based 178 

biological markers, and a variety of neuropsychological assessments; see 179 

http://adni.loni.usc.edu/) as predictors of the disease. We used data from the three phases 180 

released thus far: ADNI-GO, ADNI-2, and ADNI-3. Data reported in the current manuscript 181 

were collected from 43 sites across the United States and Canada. The MRI, cognitive 182 

batteries, and lumbar punctures were collected across one and three study sessions. The 183 

MRI session and cognitive batteries were separated by an average of 7.69 days (S.D. = 184 

15.5 days), the MRI and CSF measures were separated by an average of 7.38 days (S.D. = 185 

33.5 days), and the cognitive batteries and CSF measures were separated by an average of 186 

13.23 days (S.D. = 26.6 days). Per ADNI protocols, efforts were made to minimize inter-site 187 
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differences through the use of standardized data collection protocols (Jack et al., 2008; 188 

2015; Weber et al., 2021). To our knowledge, there have been little systematic differences 189 

in protocols across the various sites (Nir et al., 2013), and thus, data harmonization was not 190 

commonly performed across ADNI studies (Jack et al., 2008; 2015; Weber et al., 2021).  191 

Healthy participants were between 55 and 90 years old at time of recruitment, were 192 

fluent in either English or Spanish, and scored less than six on the Geriatric Depression 193 

Scale. A total of 324 participants were selected across all phases of ADNI. Of these 324 194 

individuals, participants were removed due to poor brain coverage or global signal in their 195 

fMRI data (n = 5), and those with excessive head motion (n = 30) during the resting-state 196 

fMRI scan (mean framewise displacement > .15mm) were excluded from subsequent 197 

analyses. In sum, data from 289 participant were used for all analyses in this report. Of 198 

these, the cognitively normal group comprised of 149 individuals (89 females, mean age 199 

(SD) = 72.6 (7.00)), the MCI group comprised of 109 individuals (48 females, mean age(SD) 200 

= 71.5 (7.30)), and the AD group comprised 31 individuals (13 females, mean age(SD) = 201 

73.5 (7.92)). For tests employed to determine diagnostic status, please see Supplementary 202 

Materials. 203 

 204 

2.3. Neuropsychological assessments and cerebrospinal fluid-based biomarkers 205 

Participants in the ADNI study were administered a large battery of 206 

neuropsychological tests to examine a variety of cognitive domains, including global 207 

cognition, episodic memory, executive function, spatial orientation, processing speed, and 208 

language. Pertinent to this report, we chose pre-existing, validated assessments that were 209 

available in cognitive domains commonly implicated in AD (Donohue et al., 2014): global 210 

cognition, episodic memory, and executive function. 211 

2.3.1. Cognitive composites  212 

The Preclinical Alzheimer's Cognitive Composite (PACC) characterized global 213 

cognitive deficits in preclinical AD, and includes the following measures: the Mini-Mental 214 
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Status Examination total score, the Trails-Making Test B score, the delayed recall score 215 

from the Logical Memory II subscale, and the delayed word recall from the Alzheimer's 216 

Disease Assessment Scale Cognitive Subscale (ADAS-COG). To index episodic memory, 217 

we employed the ADNI-Mem composite. This summary measure included performance on 218 

the Logical Memory I and II tasks, several item scores on the Rey Auditory Verbal Learning 219 

Test, the cognitive subscale of the Alzheimer's Disease Assessment Scale, and the three 220 

word-recall items from the Mini-Mental State Examination. Finally, to index executive 221 

functioning, the ADNI-EF composite was employed, which included the Digit Symbol 222 

Substitution test from the Weschler Adult Intelligence Scale-Revised, the Digit Span 223 

Backwards Test, Trails-Making A and B, Category Fluency, and Clock Drawing. Baseline 224 

PACC scores were available in the adnimerge.rdata file, while baseline ADNI-MEM and 225 

ADNI-EF were extracted from the uwnpsychsum.rdata file nested in the ADNIMERGE R 226 

package. 227 

 228 

2.3.2. Cerebrospinal fluid biomarkers 229 

The cerebrospinal fluid-based protein biomarkers were analyzed as the ratio of p-230 

tau/Aβ42 (pg/mL) in the cerebrospinal fluid as measured by the automated Roche Elecsys 231 

immunoassays on the Cobas e601 system. As the primary assay of the current phase 232 

(ADNI3), the Roche Elecsys immunoassay was determined to provide better compatibility 233 

for potential future ADNI releases compared to the traditional AlzBio3 immunoassay. Of 234 

note, the measurement bounds of the Elecsys-based assay meant that while Aβ42 235 

concentrations (200 pg/mL – 1700 pg/mL) were not extrapolated at the lower limits, 236 

extrapolation was performed on values at the upper limit via calibration curves by the ADNI 237 

group. We then computed a ratiometric measure of p-tau/Aβ42, with larger values indicating 238 

greater proteinopathy. 239 

 240 
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2.3.3. MRI processing and application of the connectome-based predictive modeling 241 

approach  242 

Details on the standardized structural and functional MRI data acquisition for the 243 

ADNI study are reported elsewhere (Jack et al., 2008; 2015) and summarized in the 244 

Supplementary section. Additionally, standard preprocessing pipelines were implemented 245 

on resting-state data and explained in detail in the Supplementary section. Post-processed, 246 

whole-brain functional MRI data was parcellated into 268 contiguous, functionally defined 247 

regions (i.e. nodes) that covered the cortex, the subcortex, and the cerebellum (Shen et al., 248 

2013). This functional atlas in MNI space was transformed into each participant's native 249 

functional space to generate participant specific atlases, and the BOLD signal time course 250 

was extracted from each node. Six nodes were missing from three or more participants, and 251 

they were subsequently removed from all participants during analysis. Functional 252 

connectivity was then calculated as the Fisher's z-transformed Pearson's correlation 253 

coefficient between every possible node-pair. The resulting 262 × 262 functional 254 

connectivity matrix represented the magnitude of the connection between every node (i.e. 255 

edges).  256 

In this study, we were interested in examining whether network strength of the 257 

RT_CV CPM, originally derived in Gbadeyan et al. (2022), was associated with AD 258 

pathophysiology and cognitive functioning. The RT_CV masks in the original study were 259 

derived using connectome-based predictive modeling—a supervised machine learning 260 

algorithm designed to derive brain-based predictive models from individualized functional 261 

connectivity patterns. In the Gbadeyan et al. (2022) study, using a leave-one-out cross 262 

validation (LOOCV) approach, edges with the strongest positive correlations with response 263 

time variability (RT_CV) were selected for inclusion in the high RT_CV model (i.e. most 264 

positively correlated edges). In contrast, functional connections with the strongest negative 265 

correlations were included in the low response variability model (i.e. most negatively 266 

correlated edges). Subsequently, a linear model was fitted for each of the high and low 267 
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response variability networks to generate predicted RT_CV from the left-out participant. The 268 

final high and low response variability masks included edges that occurred across each 269 

iteration of the leave-one-out cross validation, resulting in a mask representing functional 270 

connections that were consistently associated positively with RT_CV and functional edges 271 

that were consistently associated negatively with RT_CV.  272 

These final consensus masks of the high and low response variability models (262 × 273 

262 symmetrical, binary matrices with 1s for edges in the networks and 0s elsewhere), were 274 

applied to the 289 participants' functional connectivity matrices from the ADNI dataset to 275 

compute mean network summary strength scores. This resulted in a network strength score 276 

for the high RT_CV model and one network strength score for the low RT_CV model. The 277 

mean framewise displacement for participants in these analyses was low (FD mean = 278 

0.0768 mm, SD = 0.0278). However, as head motion can be a significant confound in 279 

functional connectivity-based analyses, we examined associations between motion and 280 

network strengths in the high RT_CV CPM and the low RT_CV CPM. Motion was 281 

significantly associated with network strength in the high RT_CV model (r = .48, p < .0001) 282 

and the low RT_CV CPM strength (r = -0.22, p < .001). Thus, mean framewise displacement 283 

was included as a covariate in the subsequent analyses. Of note, CSF p-tau/Aβ42 ratio as 284 

well as all cognitive composites exhibited a non-normal distribution in the current sample. As 285 

a result, Spearman's correlations were employed to examine the associations between 286 

network strength in the high and low RT_CV models and AD pathophysiology and cognitive 287 

functioning, after controlling for the effects of motion.  288 

Given the contributions of specific canonical networks to a neural signature of mind-289 

wandering, we elected to test whether the association between network strength of the 290 

RT_CV CPM and AD metrics was limited to the functional connectivity of these key 291 

canonical networks. The relationships between mind-wandering and specific brain networks, 292 

including the default mode network (Fox et al., 2015), the dorsal attention network (Christoff 293 

et al., 2016) and the frontoparietal network (O'Callaghan et al., 2019) have been well-294 
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established in prior research. As such, these networks were chosen as target regions for the 295 

application of computational lesioning in our study. Considering our previous research 296 

(Gbadeyan et al., 2022), the ventral attention network was also included given its 297 

overrepresentation in our RT_CV CPM. Edges from each of the four canonical networks—298 

within network connections and any between network connections—were excluded from 299 

participant functional connectivity matrices as well as consensus masks of the high, and low 300 

RT_CV CPM. For example, the computational lesioning of the default-mode network 301 

resulted in the removal of all edges from within the 35 default-mode network nodes, 302 

including both within- and between-network edges. RT_CV CPM was then applied to the 303 

remaining 228 × 228 functional connectivity matrices. We computed the correlation between 304 

network strength in the lesioned model and Alzheimer's disease pathophysiology and 305 

cognitive functioning. Finally, differences in the associations between the whole-brain and 306 

lesioned models were tested using Steiger's Z (Steiger, 1980). 307 

308 

3. Results309 

A total of 289 participants from the ADNI database were included in this report (see 310 

Table 1 for the participant demographics and clinical characteristics). We evaluated the 311 

association between response time variability as an indirect marker of mind-wandering and 312 

AD pathophysiology by utilizing a previously established whole-brain functional connectivity-313 

based neural signature of response time variability (Gbadeyan et al., 2022). Networks of the 314 

RT_CV CPM contained 134 edges in the high and low models, such that the high and low 315 

network included edges that were positively and negatively associated with response 316 

variability-based mind-wandering (Figure 1A). Importantly, in this study, we extended the 317 

model's generalizability to a completely novel context—assessing the associations between 318 

network strength in the high and low RT_CV CPMs with cerebrospinal fluid biomarker levels 319 

in an independent group of participants. 320 
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We found that network strength in the high RT_CV CPM was significantly associated 321 

with observed p-tau/Aβ42 ratio after accounting for head motion (high model: 𝜌 = .137, p = 322 

.0196). However, association with edges from the low RT_CV CPM was not significant (low 323 

model: 𝜌 = -.0027, p = .960, see Figure 1B). We next examined the association between 324 

network strengths of the RT_CV CPM and cognitive functioning in the domains of general 325 

cognition, episodic memory, and executive functioning. Network strengths within the 326 

consensus mask of the high RT_CV CPM—functional edges that were associated with high 327 

behavioral variability across all participants—were negatively associated with global 328 

cognitive deficits and episodic memory (PACC: 𝜌 = -.198, p < .001; ADNI-Mem: 𝜌 = -.147, p 329 

= .013), but not executive function (ADNI-EF: 𝜌 = -.111, p = .060; see figure 2A–C). 330 

However, the low RT_CV CPM did not significantly correlate with the cognition composites 331 

(Figure 2D–F).  332 

Given that only the high RT_CV CPM was significantly associated with AD 333 

pathophysiology, global cognition, and memory functioning, we performed the 334 

computational lesion analyses only for these models. Results consistently showed that the 335 

model remained significantly associated with AD pathophysiology following the removal of 336 

nodes in the default-mode network (𝜌 = .161, p = .0063), the ventral attention network (𝜌 = 337 

.129, p = .029), the dorsal attention network (𝜌 = .129, p = .028), and the frontoparietal 338 

network (𝜌 = .118, p = .045) respectively. We found no significant differences between the 339 

association of whole-brain network strength and lesioned models' network strength for CSF 340 

p-tau/Aβ42 (DMN: Steiger's Z = -0.744, p = .457; VAN: Steiger's Z = 0.422, p = .673; DAN: 341 

Steiger's Z = 0.446, p = .656; FPN: Steiger's Z = 1.18, p = .237). Similarly, network strength 342 

in the high RT_CV was associated with global cognition and memory functioning even after 343 

the removal of nodes in each of these canonical networks (See Figure 3). None of the 344 

Steiger's Z comparisons were statistically significant for global cognition or episodic 345 

memory. 346 

 347 
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4. Discussion 348 

The primary goal of this study was to examine the association between a whole-349 

brain, connectivity-based signature of mind-wandering (RT_CV CPM; Gbadeyan et al., 350 

2022) and the proteinopathies of amyloid beta and tau pathology. We showed that network 351 

strength of the high mind-wandering model was positively associated with cerebrospinal 352 

fluid p-tau/AB42 ratio in an independent sample of mixed healthy, MCI, and AD participants. 353 

Although interest in the relationship between mind-wandering and AD has begun to gain 354 

traction in the field (Gyurkovics et al., 2018; Kvavilashvili et al., 2020; O'Callaghan et al., 355 

2019), our findings here are the first to bridge the gap between a neural correlate of mind-356 

wandering and AD pathophysiology. Additionally, consistent with our initial hypothesis, 357 

network strength in the high RT_CV CPM also had significant associations with cognitive 358 

domains that commonly show declines in AD, such as general cognition (Donohue et al., 359 

2014), and memory (Kelley & Petersen, 2007). Although cross-sectional, our study results 360 

provide the first evidence for a direct link between functional connectivity patterns that 361 

predict response time variability—an indirect, yet objective marker of mind-wandering—and 362 

AD pathogenesis and cognitive functioning. 363 

As hypothesized, edges within the high response time variability model were 364 

significantly associated with cerebrospinal fluid p-tau/Aβ42 levels from an independent, 365 

mixed pathology sample. These results suggest that older adults showing greater functional 366 

connectivity between nodes of this network also have high baseline levels of amyloid and 367 

tau pathology. Our results are consistent with the literature examining response time 368 

variability as a marker of decline in older adults with and without AD pathophysiology (Gorus 369 

et al., 2008). Across studies, older adults, including older adults with mild cognitive 370 

impairment and AD, show an increase in response time variability, suggesting that 371 

performance on cognitive tasks is more variable in older adults on the spectrum of 372 

pathological aging. Although mind-wandering has traditionally been investigated through the 373 

lens of self-caught probes, there is emerging consensus on the multi-dimensional nature of 374 
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mind-wandering (Wang et al., 2018a). Response time coefficient of variability—indexing the 375 

trial-to-trial fluctuations in reaction time—is considered an indirect, yet objective marker of 376 

mind-wandering (Seli et al., 2013). Furthermore, response time variability may indeed also 377 

capture the more goal-oriented state of mind-wandering, as opposed to the more 378 

exploratory, off-focus state captured through thought-probes (Mittner et al., 2016), thus 379 

suggesting that the neural connections associated with high variation in response time has 380 

critical significance for understanding the neurobiological basis of mind-wandering. 381 

Extending this to the domain of AD pathophysiology, we showed that there may exist a 382 

closer association between AD pathophysiology and the neural signatures of mind-383 

wandering than previously believed. 384 

Furthermore, the edges critical to this network, primarily located in the subcortical, 385 

visual, and ventral attention networks (see Gbadeyan et al., 2022), represent a widespread 386 

distribution across multiple functional networks. Between-network contributions from the 387 

default mode network and the networks such as the ventral attention and frontoparietal 388 

networks were also highly represented in the high RT_CV CPM. The functional 389 

neuroanatomy of our high RT_CV CPM thus mirrors the growing evidence that implicates 390 

the default mode network as being involved in high mind-wandering while simultaneously 391 

acknowledging that mind-wandering is an emergent construct that is likely associated with 392 

dynamic interactions across multiple canonical networks (Fox et al., 2015). Additionally, the 393 

default mode network and its various nodes have been critically implicated in the early 394 

pathophysiological processes of AD, with both the accumulation of β-amyloid plaques and 395 

tau tangles disproportionally aggregating in the densely connected midline structures of the 396 

posteromedial cortices and the medial prefrontal cortex (Elman et al., 2016; Buckner et al., 397 

2005), and the medial temporal (Kaufman et al., 2018; Adams et al., 2019), respectively. 398 

Thus, our study, showing an association between the high RT_CV CPM that includes a 399 

large representation from the default mode network and AD pathophysiology, lends support 400 

to a potential link between mind-wandering and AD neurodegeneration. 401 
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It is also important to note, however, that the default mode network dysfunction lacks 402 

specificity, with default mode network alterations noted across a wide range of psychiatric 403 

(Whitfield-Gabrieli and Ford, 2012) and neurological disorders (Mohan et al., 2016). This 404 

network has also been implicated in cognitive processes beyond mind-wandering (e.g. 405 

social cognition; Buckner et al., 2008; Mars et al., 2012; Li et al., 2014). Additionally, even 406 

though the default mode network is central to mind-wandering and AD pathophysiology, 407 

there is also newer literature that questions the centrality of the default mode network in 408 

early AD pathophysiology (Buckley et al., 2017, Pereira et al., 2021, Tahmi et al., 2020, 409 

Hahn et al., 2019) and implicates the involvement of other large-scale brain systems. 410 

Notably, there is growing evidence from neuroimaging investigations (Wang et al., 2018b; 411 

Groot et al., 2020; Yamashita et al., 2021) and meta-analytic evidence (Fox et al., 2014) 412 

suggesting the involvement of other large-scale canonical networks, such as the 413 

frontoparietal, dorsal attention, somatomotor, and salience networks, along with the 414 

functional coupling between these networks, in subserving mind-wandering (Groot et al., 415 

2020). Additionally, the relationship between default mode network connectivity and AD is 416 

now recognized to be potentially less robust than previously indicated (Tahmi et al., 2020). 417 

Instead, it appears to be influenced by factors such as amyloid burden and specific 418 

cognitive submeasures (Buckley et al., 2017; Pereira et al., 2021).  419 

To systematically examine the contribution of individual canonical networks, we 420 

elected to further explore the predictive contributions of the key networks via a 421 

computational lesion method. In selecting networks to be lesioned, we included the default 422 

mode network and the dorsal attention network due to their longstanding associations with 423 

mind-wandering (Christoff et al., 2016; Fox et al., 2015). Additionally, the functional 424 

connectivity of the frontoparietal network has been posited as potentially critical to the shifts 425 

in mind-wandering behavior among older adults with dementia (O'Callaghan et al., 2019). 426 

Finally, the ventral attention network was included due to its overrepresentation in our 427 

RT_CV CPM. The computational lesioning of each of the four chosen networks provided 428 
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evidence to the robustness of the whole-brain RT_CV CPM in support our initial hypothesis 429 

that a whole-brain neural marker of mind-wandering is associated with AD pathophysiology 430 

over and above that of individual canonical networks. Since the predictive power of the 431 

RT_CV CPM was retained at each of the computational lesioning, we argue that it is the 432 

combined connectivity patterns across the identified connectome that plays a role in that 433 

predictive utility, not merely that of the specific networks. Taken together, these findings 434 

lend credence to the hypothesized links between mind-wandering and AD pathophysiology.  435 

Confirming the association between mind-wandering and cognitive performance 436 

(Mooneyham & Schooler, 2013), we found that network strength in the high RT_CV CPM 437 

was further associated with both global cognition and episodic memory. Of note, global 438 

cognition has been shown to consistently decline with age (Wilson et al., 2020) and with 439 

disease severity over time (Soldan et al., 2016). Indeed, global cognition measures, such as 440 

the PACC are sensitive to Aβ-related cognitive decline, and are frequently employed as a 441 

diagnostic screening tool for AD (Donohue et al., 2014). However, the relationship between 442 

mind-wandering and global cognition remains tangential, outside of domain-specific task 443 

performances (see Randall et al., 2014 for a review). In our study, extending prior work, we 444 

demonstrate that network strength in the functional connections predictive of high mind-445 

wandering is further associated with lower global cognition in a large sample of older adults.  446 

Furthermore, our results show that network strengths in the high RT_CV CPM are 447 

also strongly associated with poorer episodic memory. That is, stronger network functional 448 

connectivity for regions that predicted high response time variability is linked to poorer 449 

memory. Since memory declines are traditionally seen as the first casualty of AD-related 450 

neurodegeneration (Jahn, 2022) with prodromal memory deficits often being employed to 451 

indicate potential disease onset, the association of a neural model of mind-wandering with 452 

memory is notable. Additionally, mind-wandering has traditionally been closely tied to 453 

executive control—either as a function or a failure of it (Kane & McVay 2012), even though 454 

executive function itself is a broad term comprising multiple top-down cognitive processes 455 
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(Miyake et al., 2000). While declines in these same processes have been demonstrated to 456 

be important tools in diagnosing AD (see Guarino et al., 2019 for a review), our results 457 

showing that executive function was not significantly associated with RT_CV network 458 

strengths could potentially point to the heterogenous nature of either mind-wandering, 459 

executive function, or both. Despite this, our results lend credence to the position that mind-460 

wandering may be well positioned to be a potent biomarker for AD given the important 461 

ramifications that AD pathophysiology has on global cognition (Soldan et al., 2016), and 462 

memory (Jahn 2022). 463 

Though the current study demonstrated the association between a neural model of 464 

response time variability and AD pathophysiology, several limitations remain. Critically, we 465 

employed a neural signature of response time variability as an indirect marker of mind-466 

wandering to examine its relationship with AD pathophysiology. Although there has been 467 

evidence for the use of behavioral variability as an indirect index of mind-wandering (Mrazek 468 

et al., 2012; Whitmoyer et al., 2020), there remains much debate as to the precise modality 469 

of the phenomenon. Within the literature, self-reported thought probes, other behavioral 470 

measures, and neurocognitive measures all represent potential markers of mind-wandering 471 

(Martinon et al., 2019; Smallwood and Schooler, 2015). As such, our findings represent only 472 

one aspect of mind-wandering and future studies could explore the disparate aspects of 473 

mind-wandering that may be involved in Alzheimer's disease pathophysiology. 474 

Furthermore, the cross-sectional nature of our analyses provides only a snapshot of 475 

how a mind-wandering connectome might interact with AD pathophysiology at a single time 476 

point. Additionally, we note that model performance with AD pathophysiology associations, 477 

though statistically significant, remains weak (𝜌 = .137). While this is indeed lower than the 478 

predictive power seen in connectome-based modeling of other cognitive constructs (Avery 479 

et al., 2020; Barron et al., 2021; Finn et al., 2015; Manglani et al., 2022; Lin et al., 2018; 480 

Rosenberg et al., 2016), prior work has also shown that these associations tended to be 481 

lower when task-based CPMs are tested on resting-state scans (see Greene et al., 2018). In 482 
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fact, in our original analyses of the RT_CV model (Gbadeyan et al., 2022), although the 483 

model derived on task was significant (ρ = .25), employing resting-state data to test the 484 

generalizability of the model in an independent dataset resulted in effects comparable to the 485 

ones observed in the current study (ρ = .15 for the combined model).  486 

Finally, although previous studies have linked RT_CV with mind-wandering 487 

(Gbadeyan et al., 2022, Whitmoyer et al., 2020, Bastian & Sackur, 2013; Seli et al., 2013), 488 

trait-like variables, such as intelligence and g-factor, may also potentially underlie the 489 

associations observed between functionally relevant edges found in the RT_CV 490 

connectome and global cognition measures (Doebler & Scheffler, 2016). The ADNI dataset 491 

lacks measures of general intelligence (combining both fluid and crystallized intelligence) to 492 

tease apart this association. Nonetheless, research investigating the relationship between 493 

intelligence and RT_CV has suggested small effect sizes (r2 ≈ 4-9%; Doebler & Scheffler, 494 

2016) while studies examining correlations between RT_CV and other mind-wandering 495 

measures (e.g. sensitivity d', probe-measured task unrelated thoughts, etc.) typically find 496 

larger effect sizes (r2 ≈ 9-36%; see Kane & McVay, 2012). Thus, although we cannot 497 

completely rule out the possibility that intelligence underlies our findings, extent evidence 498 

suggests that mind-wandering nevertheless plays a significant role.  499 

Despite the limitations, the current study is the first to successfully establish the novel 500 

associations between a behaviorally measured mind-wandering neural signature with 501 

cerebrospinal fluid pathophysiology and cognitive functioning in a large cohort of mixed 502 

pathology participants and healthy controls (n = 289). The robustness of our findings is 503 

further supported by continued significant associations following computationally lesioning 504 

of networks thought to be critical to mind-wandering. Altogether, our findings offer a glimpse 505 

at the neural underpinnings of mind-wandering and their possible links to healthy and 506 

diseased aging. Future work on different mind-wandering modalities may further shed light 507 

on this relationship and allow for a more comprehensive understanding of this relationship. 508 

 509 
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Table 1: Baseline characteristics of participants. 767 
768 
769 

770 
771 
772 

* Race missing for one participant in the MCI group773 
** APOE information missing for one participant in the CN group774 
CN=cognitively normal, MCI=mild cognitive impairment, AD= Alzheimer's disease775 

776 

n = 289 

Characteristic Mean (SD) or N (%) Range 

Sex 
Female 150 (51.9%) 
Male 139 (48.1%) 

Race* 
Asian 7 (2.4%) 
Black 8 (2.8%) 
More than One 
Race 7 (2.4%) 
White 266 (92%) 

Age (years) 72.3 (7.22) 55.5 to 91.5 
Years of education 16.6 (2.32) 11 to 20 

Diagnostic 
Status 

4 allele
absent

4 allele(s)
present

CN 149 98 (66.2%) 50 (33.8%) 
MCI 109 60 (55%) 49 (45%) 
AD 31 5 (16%) 26 (84%) 
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Figure 1. The anatomical distribution of predictive edges in the RT_CV CPM and the 805 
associations between network strength and AD pathology. A) Predictive edges for the 806 
high (134 edges, in red) and low (134 edges, in blue) RT_CV CPMs. Predictive edges 807 
were further collapsed to their canonical networks and are visualized using chord 808 
diagrams. B) Scatterplot of the Spearman's correlations between summary network 809 
strength scores and cerebrospinal fluid-measured p-tau/A β42 levels for the high RT_CV 810 
CPM (in red) and the low RT_CV CPM (in blue).  811 
  812 
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Figure 2. Associations between the high RT_CV CPM connectivity strength and 840 
cognitive composite scores. Scatterplots show the correlation between model-based 841 
connectivity strength from the high response time variability connectome-based 842 
predictive model and the observed scores from the: A) Preclinical Alzheimer's Cognitive 843 
Composite (PACC), B) ADNI-Memory (ADNI-Mem) composite, and C) ADNI-Executive 844 
Functioning (ADNI-EF) composite. Correlations with the low response time variability 845 
connectome-based predictive model are also shown for the: D) PACC, E) ADNI-MEM, 846 
and F) ADNI-EF. Annotations represent Spearman's correlation coefficients and p-847 
values. 848 

849 
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Figure 3. Network strength associations following computational lesion analyses. Bar 877 
graphs show the Spearman's correlations between summary network strengths in the 878 
high RT_CV model and p-tau/Aβ42 levels, PACC, and ADNI-MEM before (top) and after 879 
lesioning the default mode network, ventral attention network, dorsal attention network, 880 
and frontoparietal network, respectively. 881 
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Response time variability is considered an objective, albeit indirect, marker of mind-

wandering. In this study, we applied a previously-derived connectome-based model 

of response time variability to resting-state data obtained from 289 older adults in the 

Alzheimer’s Disease NeuroImaging Initiative. The network strength of the high 

response time variability model was correlated with a cerebrospinal fluid (CSF)-

based ratiometric measure of amyloid and tau pathology. Additionally, our results 

demonstrated that the network strength in the high response time variability model 

was also linked with global cognition and episodic memory. This study provides the 

first empirical support for the association between a neuromarker of response time 

variability—an indirect marker of mind-wandering—and AD pathophysiology. 
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